

Competition and Investment In Mobile Telecommunications *Mexico - November 4, 2020*

Marc Ivaldi
Toulouse School of Economics
NERA Economic Consulting

OUTLINE

- 1. Market structure and performance since the 4G
- 2. The issue of mergers in telecoms
- 3. A research study for the French case
- 4. Simulation results
- 5. Conclusion

1. Market structure and performance of the mobile telecoms industry in Europe

Market performance: Quality (download speed)

Market performance: Prices (average revenue per user ARPU)

Market performance: Investment (CAPEX)

Market structure

Market structure

- Less concentration with less players
 - Market shares are getting more symmetric

2. The issue of mergers in Telecoms

Motivation

- Traditional merger evaluation
 - Trade-offs between market power and economies of scale
 - Increasing concentration

 higher prices
 - Increased firm size
 cost efficiencies
 - An empirical matter

Motivation

- Traditional merger evaluation
- Modern telecommunications industry
 - Impact of consolidation on costs
 Impact on quality of service
 - Same level of transmission capacity spread
 - Across a large / small number of customers with low / high download speed

- Mergers in Telecoms
 - A question of quality of service
 - Discussion on Network Sharing Agreements (NSAs)

Objective

- How to change in market structure impact
 - Price
 - Quality
 - Cost
 - Welfare
- What is the future of the mobile telecom industry in the EU?
 - Only 3 operators per countries ?
 - Only 3 operators at the EU level ?
- Need: A model of infrastruture costs and delivered quality

Literature

- Market power vs. scale efficiencies
 - Williamson (1968)
- Market power and antitrust in telecom
 - DeGraba and Rosston (2018)
 - Bourreau, Sun and Verboven (2018)
 - Sinkinson (2016)
- Network effects in telecom
 - Bjorkengren (2018), Weiergraeber (2018)

Literature

- Market power vs. scale efficiencies
- Market power and antitrust in telecom
- Network effects in telecom
- Congestion externalities
 - Vickrey (1969)
 - Dinkelman and Schulhofer-Wohl (2015)
- Infrastructure in mobile telecommunications
 - Nevo, Turner, and Williams (2016)
 - Sun (2015)
 - Baszczyszyn and Karray (2015)

3. A research study for the French case

Structure

4 MNOs + MVNOs

Orange	Bouygues	Free	SFR	MVNO
31.76%	14.12%	14.12%	24.71%	15.29%

- 4G technology
 - Focus on data
- Each MNO has its own network in urban areas
 - Allocated frequency bandwidth and build base stations
 - Quality = download speed

Data

- Detailed municipality-product-level data for all customers from one firm (Orange)
- Aggregate (national) market shares for other firms
- Full menu of contracts for each firm obtained from catalogs
- Municipality-level measure of download speed derived from data on network infrastructure (ANFR)
- Demographic information from INSEE

Model

- Transmission equilibrium
 - Queueing + network effect (congestion)
 - Quality delivered by each firm = difference between
 - Theoretical upper bound on capacity (engineering rules)
 - Bandwidth
 - Size of base station (radius)
 - Arrival rate of download requests
 - Depends on demand, ie, on price and quality of others!!

Model

- Transmission equilibrium (engineering model)
 - Quality as a function of bandwidth and radius of base stations
- Price competition
 - Given quality, which prices?
 - Prices as a function of bandwidth and radius of base stations

Model

- Transmission equilibrium
 - Quality as a function of bandwidth and radius of base stations
- Price competition
 - Prices as a function of bandwidth and radius of base stations
- Infrastructure competition
 - LR Profit as a function of bandwidth and radius of base stations
 - Outcome: Vector of bandwidth and radius

Scale efficiencies

- Economies of density
 - Merged firm has a higher effective density of consumers
 - Data requests completed more efficiently the closer one is to the base station
 - On average, consumers and base stations are closer together, yielding higher download speeds
- Congestion: Merged firm has twice the bandwidth
 - Increased bandwidth increases the channel capacity by more than the added data demanded offsets it, yielding higher download speeds

A merger of two symmetric firms can yield higher quality at the same cost, holding data demanded constant

4. Simulation results

Per-base station variable cost (with bandwidth)

Per-base station variable cost (with bandwidth)

A merger in the general case

5. Conclusion

Main technical points

- Trade-off between between scale efficiencies and market power
 - Key issue of integrating an engineering-based model of infrastructure with an economic model of competition
- U-shaped relation between price and number of firms
 - Due to congestion
 - Only for highly ealstic demand
 - Can make the case for mergers from n to 3 firms

Main policy recommendations

- The market structure impacts the trade-off between quality and price
 - Scope for regulation
- Both passive and active should be encouraged
 - Active sharing on the RAN (excluding sharing the spectrum?)
 - Not fully a matter of population density

Thankyou